Add like
Add dislike
Add to saved papers

Multi-feature sparse representation based on adaptive graph constraint for cropland delineation.

Optics Express 2024 Februrary 13
Cropland delineation is the basis of agricultural resource surveys and many algorithms for plot identification have been studied. However, there is still a vacancy in SRC for cropland delineation with the high-dimensional data extracted from UAV RGB photographs. In order to address this problem, a new sparsity-based classification algorithm is proposed. Firstly, the multi-feature association sparse model is designed by extracting the multi-feature of UAV RGB photographs. Next, the samples with similar characteristics are hunted with the breadth-first principle to construct a shape-adaptive window for each test. Finally, an algorithm, multi-feature sparse representation based on adaptive graph constraint (AMFSR), is obtained by solving the optimal objective iteratively. Experimental results show that the overall accuracy (OA) of AMFSR reaches 92.3546% and the Kappa is greater than 0.8. Furthermore, experiments have demonstrated that the model also has a generalization ability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app