Add like
Add dislike
Add to saved papers

EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features.

Antimicrobial peptides (AMPs), as the preferred alternatives to antibiotics, have wide application with good prospects. Identifying AMPs through wet lab experiments remains expensive, time-consuming and challenging. Many machine learning methods have been proposed to predict AMPs and achieved good results. In this work, we combine two kinds of word embedding features with the statistical features of peptide sequences to develop an ensemble classifier, named EnAMP, in which, two deep neural networks are trained based on Word2vec and Glove word embedding features of peptide sequences, respectively, meanwhile, we utilize statistical features of peptide sequences to train random forest and support vector machine classifiers. The average of four classifiers is the final prediction result. Compared with other state-of-the-art algorithms on six datasets, EnAMP outperforms most existing models with similar computational costs, even when compared with high computational cost algorithms based on Bidirectional Encoder Representation from Transformers (BERT), the performance of our model is comparable. EnAMP source code and the data are available at https://github.com/ruisue/EnAMP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app