Add like
Add dislike
Add to saved papers

Bipolar Rashba Semiconductors: A Class of Nonmagnetic Materials for Electrical Spin Manipulation.

The realization of the electrical control of spin is highly desirable. One promising approach is by regulating the Rashba spin-orbit coupling effect of materials through external electric fields. However, this method requires materials to possess either a high electric field response and a large Rashba constant or the simultaneous presence of Rashba splitting and ferroelectric polarization. These stringent requirements result in a scarcity of suitable materials. In order to surpass these limitations and exploit a new prospect for spin manipulation via the Rashba effect, a conceptual class of materials named bipolar Rashba semiconductors (BRS) is proposed, whose valence band and conduction band possess opposite spin texture directions when approaching the Fermi level. The unique electronic structure of BRS makes it feasible to reverse the spin precession by simply applying a gate voltage. The existence of BRS is confirmed through first-principles calculations on the two-dimensional (2D) material AlBiS3 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app