Add like
Add dislike
Add to saved papers

From liquid to crystal via mechanochemical grinding: unique host-guest (HOF) cocrystal.

Mechanochemical synthesis via grinding of trimesic acid (TA, C9 H6 O6 ) and 4-chlorophenyl diphenyl phosphate (4CDP, C18 H14 ClO4 P) (liquid at room temperature) in a 1:1 ratio resulted in the formation of an inclusion type of cocrystal. The crystallization of this phase via slow evaporation at low temperature (276-277 K) from methanol resulted in a rare `stairstep morphology' during the process of crystal growth. This morphology was not observed after crystallization of the compound from other solvents like toluene, dichloromethane, acetone, hexane and isooctane, and hence this was characteristically observed in methanol only. The characterization from single-crystal X-ray diffraction revealed the formation of a cocrystal with five molecules of TA and two molecules of 4CDP in the asymmetric unit. The trimesic acid molecules form hydrogen-bonded dimers resulting in hexagonal rings, and these rings are stacked through π-π intermolecular interactions to make a hexagonal honeycomb-like structure. The phosphate molecules, 4CDP, were found to be trapped as guests in these hexagonal channels. The similarity in the packing of trimesic acid is compared in the cocrystal and the free acid quantitatively via Xpac analysis, which establishes the relationship of a `2D supramolecular construct' between them. This signifies a unique type of arrangement in which the voids created by the trimesic acid moiety do not undergo distortion by the inclusion of the guest molecules. The quantitative analysis of the intermolecular interactions using Hirshfeld surfaces and fingerprint plots deciphers the role of both strong O-H...O hydrogen bonds and weak intermolecular interactions in the crystal packing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app