Add like
Add dislike
Add to saved papers

Prediction of long-term polysorbate degradation according to short-term degradation kinetics.

MAbs 2023
Polysorbates (PSs) are a class of surfactants commonly used in the formulation of protein therapeutic agents to provide protection against denaturation and aggregation. When the PS in these drug formulations degrades, loss of stabilization of the protein therapeutic and formulation may occur, resulting in particulate formation or other undesirable changes in product critical quality attributes. Here, we present a simplified platform to predict long-term PS20 and PS80 degradation for monoclonal antibody drugs containing the PS-degrading enzyme lysosomal acid lipase. The platform was based on a temperature-dependent equation derived from existing PS20 degradation stability data. Accurate prediction of both PS20 and PS80 hydrolysis for as long as 2 years was achieved through short-term kinetics studies performed within 2 weeks. This platform substantially shortens the time required to determine the long-term stability of PS degradation and therefore can be used to guide the purification process and optimization of antibody formulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app