Add like
Add dislike
Add to saved papers

Effect of High Laser Energy Density on Selective Laser Melted 316L Stainless Steel: Analysis on Metallurgical and Mechanical Properties and Comparison with Wrought 316L Stainless Steel.

The austenitic 316L stainless steel (SS) is used extensively for marine applications as well as in construction, processing, and petrochemical industries due to its outstanding corrosion resistance properties. This study investigates the density, microhardness, and microstructural development of 316L SS samples fabricated by selective laser melting (SLM) under high laser energy densities. The selective laser melted (SLMed) specimens were fabricated under high laser energy densities (500, 400, and 333.33 J/mm3 ) and their metallurgical and mechanical properties were compared with the wrought specimen. SLMed 316L SS showed excellent printability, thereby enabling the fabrication of parts near full density. The porosity content present in the SLMed specimens was determined by both the image analysis method and Archimedes method. SLMed 316L specimens fabricated by the SLM process allowed observation of a microhardness of 253 HV1.0 and achieved relative density up to 98.022%. Microstructural analysis using optical microscopy and phase composition analysis by X-ray diffraction (XRD) has been performed. Residual stresses were observed using the XRD method, and compressive stress (-68.9 MPa) was noticed in the as-printed specimen along the surface of the build direction. The microstructure of the as-built SLMed specimens consisted of a single-phase face-centered cubic solid solution with fine cellular and columnar grains along the build direction. The SLMed specimens seemed to yield better results than the wrought counterpart. IRB approval and Clinical Trial Registration Number are not applicable for this current work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app