Add like
Add dislike
Add to saved papers

T-cell dysfunction in natural killer/T-cell lymphoma.

Natural killer/T-cell lymphoma (NKTCL) is an incurable aggressive T-cell lymphoma closely correlated with Epstein‒Barr virus (EBV) infection. Chronic and consistent viral infection induces T-cell exhaustion. Herein, we describe T-cell dysfunction in NKTCL patients for the first time. Peripheral blood mononuclear cells (PBMCs) from age-matched healthy donors (HDs) and NKTCL patients were collected, and lymphocyte distributions, multiple surface inhibitory receptors (IRs), effector cytokine production and cell proliferation were determined by flow cytometry. PBMCs from HDs were cocultured with NKTCL cell lines to verify the clinical findings. IR expression was further assessed in NKTCL tumor biopsies using multiplex immunohistochemistry (mIHC). NKTCL patients have higher frequencies than HDs of inhibitory T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs). T-cell distribution also varies between NKTCL patients and HDs. T cells from NKTCL patients demonstrated higher expression levels of multiple IRs than HDs. Meanwhile, T-cell proliferation and interferon-γ production was significantly reduced in NKTCL patients. More importantly, the number of EBV-specific cytotoxic cells was lower in NTKCL patients, and these cells demonstrated upregulation of multiple IRs and secreted fewer effector cytokines. Interestingly, NKTCL cells caused normal PBMCs to acquire T-cell exhaustion phenotypes and induced generation of Tregs and MDSCs. In line with ex vivo finding, mIHC results showed that CD8+ T cells from NKTCL tumor biopsies expressed much higher level of IRs compared with reactive lymphoid hyperplasia individuals. The immune microenvironment of NKTCL patients exhibited T-cell dysfunction and accumulation of inhibitory cell components, which may contribute to impaired antitumor immunity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app