Add like
Add dislike
Add to saved papers

Epithelial-mesenchymal Transition Phenotypes in Vertebral Metastases of Lung Cancer.

Vertebral metastases of non-small cell lung cancer (NSCLC) are frequently diagnosed in the metastatic setting and are commonly identified in the thoracic vertebrae in patients. Treatment of NSCLC bone metastases, which are often multiple, is palliative, and the median survival times are 3 to 6 months. We have characterized spontaneous vertebral metastases in a brain metastases model of NSCLC and correlated these findings with epithelial-mesenchymal transition (EMT). Brain metastases were established in athymic nude mice following intracardiac injection of brain-seeking adenocarcinoma NSCLC cells. Thirty-nine percent of mice (14/36) developed spontaneous vertebral metastases, spinal cord compression, and hind-limb paralysis. Vertebral metastases consisted of an adenocarcinoma phenotype with neoplastic epithelial cells arranged in cords or acini and a mesenchymal phenotype with spindloid neoplastic cells arranged in bundles and streams. Quantitative and qualitative immunohistochemical and immunofluorescence assays demonstrated an increase in vimentin expression compared to cytokeratin expression in vertebral metastases. A correlation with EMT was supported by an increase in CD44 in vertebral metastases and parenchymal metastases. These data demonstrate a translational lung cancer metastasis model with spontaneous vertebral metastasis. The mesenchymal and epithelial phenotype of these spontaneous metastases coupled with EMT provide a conduit to improve drug delivery and overall patient survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app