Add like
Add dislike
Add to saved papers

Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation.

As an industrial waste characterized by huge volume and high alkalinity, red mud has become a serious environmental problem. The reuse of red mud has been explored in previous studies, including as building materials and for soil and waste water treatment. In this study, an innovation was made for the reuse of red mud to create a synergistic effect. Red mud was first used in flue gas desulfurization (FGD), and then the desulfurized red mud was again reused to make a geopolymer material. By using one type of original red mud and three types of fly ash, this study revealed that with high alkalinity and desulfurization capacity, the red mud could serve as an excellent FGD sorbent. After FGD, the sodium sulfate in the desulfurized red mud acted as a chemical activator for geopolymer made with class C fly ash. A 25% increase in strength was observed between the geopolymers with the red mud after FGD and with the original one. There are no significant benefits of FGD on the class F fly ash-based geopolymers and further study is required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app