Add like
Add dislike
Add to saved papers

Giant magnetoresistance control and nontrivial metallic state manipulation in a transition-metal dichalcogenide spin-valve using a gate voltage.

Here, we have theoretically studied the valley- and spin-resolved transport in a monolayer transition metal dichalcogenides based spin valve device, where both the Rashba spin orbit interaction and a gate voltage coexist in the central lead. In contrast to conventional semiconductor, nontrivial metallic states, such as, normal Rashba metal state (NRMS), anomalous Rashba metal state (ARMS), and Rashba ring metal state (RRMS), can be generated and manipulated by Rashba spin orbit interaction without the magnetic effect. For a nonferromagnetic double junction, it was found that the valley- and spin-resolved tunneling conductance can be effectively tuned by the incident energy, the junction length, the Rashba spin orbit interaction strength, and the gate voltage. Due to the spin texture and the Fermi wavevectors in the central lead, both the tunneling coefficient and the tunneling conductance all exhibit the remarkable characteristic features which enable us to diagnose the special states. For a ferromagnetic spin valve device, the resulting nontrivial metallic groundstates in the central lead also demonstrate directly in the giant magnetoresistance with notable unique features. We have further revealed that a perfect valley and spin giant magnetoresistance stems from the spin splitting and the spin-valley coupling. These valley- and spin-resolved phenomena are interesting for both fundamental research and applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app