Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Age, gender, blood pressure, and ventricular geometry influence normal 3D blood flow characteristics in the left heart.

AIMS: The aim of this study was to assess the effect of age, gender, physiological, and global cardiac function parameters on differences in normal 3D blood flow in the left ventricle (LV) and atrium (LA) using 4D flow magnetic resonance imaging (MRI).

METHODS AND RESULTS: Four-dimensional flow MRI was acquired in healthy volunteers of two age and gender groups: <30 years (6 women, n = 12) and >50 years (6 women, n = 12). Systolic and early to mid-diastolic vortex flow (number of vortices, duration, area, peak velocity inside the vortex) in the LA and LV was assessed using intra-cardiac flow visualization based on 3D particle traces and velocity vector fields. A larger number of vortices in the LA were found in young compared with older individuals (number of diastolic vortices: 1.6 ± 0.8 vs. 0.7 ± 0.7, P = 0.01) with higher velocities (54 ± 12 cm/s vs. 41 ± 11 cm/s in systole, 47 ± 13 vs. 31 ± 8 cm/s in diastole, P < 0.05). Vortices in the LV base were smaller in women compared with men (369 ± 133 vs. 543 ± 176 mm(2), P = 0.009), while vortex size was increased in mid-ventricular locations (maximum area: 546 ± 321 vs. 293 ± 174 mm(2), P < 0.05). Correlation analysis revealed significant relationships (P = 0.005-0.048, correlation coefficients = 0.44-0.84) between LA and LV vortex characteristics (number, size, vortex velocities) and blood pressure as well as end-diastolic volume, LV length, and ejection fraction.

CONCLUSIONS: Flow patterns in the left heart demonstrated differences related to age, gender, blood pressure, and ventricular geometry. The findings constitute a prerequisite for the understanding of the impact of cardiac disease on intra-cardiac haemodynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app