RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
A point mutation in transthyretin increases affinity for thyroxine and produces euthyroid hyperthyroxinemia.
Journal of Clinical Investigation 1990 December
In a family expressing euthyroid hyperthyroxinemia, an increased association of plasma thyroxine (T4) with transthyretin (TTR) is transmitted by autosomal dominant inheritance and is secondary to a mutant TTR molecule with increased affinity for T4. Eight individuals spanning three generations exhibited the abnormality. Although five of eight individuals had elevated total T4 concentrations, all affected individuals were clinically euthyroid and all had normal free T4 levels. Purified TTR from the propositus had an affinity for 125I-T4 three times that of control TTR. Exons 2, 3, and 4 (representing greater than 97% of the coding sequence) of the TTR gene of DNA prepared from the propositus' peripheral blood leukocytes were amplified using the polymerase chain reaction (PCR) and were sequenced after subcloning. Exons 2 and 3 were indistinguishable from normal. In 50% of clones amplified from exon 4, a substitution of adenine (ACC) for guanine (GCC) in codon 109 resulted in the replacement of threonine-for-alanine, a mutation confirmed by amino acid sequencing of tryptic peptides derived from purified plasma TTR. The adenine-for-guanine substitution abolishes one of two Fnu 4H I restriction sites in exon 4. PCR amplification of exon 4 of TTR and restriction digestion with Fnu 4H I confirmed that five affected family members with increased binding of 125I-T4 to TTR are heterozygous for the threonine 109 substitution that increases the affinity of this abnormal TTR for T4.
Full text links
Trending Papers
Diabetic kidney disease in type 2 diabetes: a consensus statement from the Swiss Societies of Diabetes and Nephrology.Swiss Medical Weekly 2023 January 7
Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment.Frontiers in Immunology 2022
Migraine.Annals of Internal Medicine 2023 January 11
Long COVID: major findings, mechanisms and recommendations.Nature Reviews. Microbiology 2023 January 14
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app