Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Niche differentiation between diploid and hexaploid Aster amellus.

Oecologia 2008 December
The maintenance of separated diploid and polyploid populations within a contact zone is possible due to both prezygotic and postzygotic isolation mechanisms. Niche differentiation between two cytotypes may be an important prezygotic isolating mechanism and can be studied using reciprocal transplant experiments. We investigated niche differentiation between diploid and hexaploid Aster amellus in their contact zone in the Czech Republic. Diploid populations are confined to habitats with low productivity, whereas hexaploid populations occur in habitats with both low and high productivity. Thus, we chose three diploid populations and six hexaploid populations, three in each of the two different habitat types. We analyzed habitat characteristics and carried out reciprocal transplant experiments in the field using both seeds and adult plants. Sites of diploid and hexaploid populations differed significantly in vegetation and soil properties. The mean number of juveniles was higher at sites of home ploidy level than at sites of foreign ploidy level, suggesting niche differentiation between the two cytotypes. On the other hand, transplanted adult plants survived at all sites and juvenile plants were able to establish at some sites of the foreign cytotype. Furthermore, the mean number of juveniles, survival, and flowering percentages were higher at home sites than at foreign sites, indicating local adaptation. We conclude that niche differentiation between the two cytotypes and local adaptation within each cytotype may contribute to the maintenance of diploid and hexaploid populations of A. amellus in their contact zone. Moreover, further factors, such as differences in flowering phenology and exclusion of minority cytotypes, should also be considered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app