Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Swallowtail porphyrins: synthesis, characterization and incorporation into porphyrin dyads.

The incorporation of symmetrically branched tridecyl ("swallowtail") substituents at the meso positions of porphyrins results in highly soluble building blocks. Synthetic routes have been investigated to obtain porphyrin building blocks bearing 1-4 swallowtail groups. Porphyrin dyads have been synthesized in which the zinc or free base (Fb) porphyrins are joined by a 4,4'-diphenylethyne linker and bear swallowtail (or n-pentyl) groups at the nonlinking meso positions. The swallowtail-substituted Zn(2)- and ZnFb-dyads are readily soluble in common organic solvents. Static absorption and fluorescence spectra and electrochemical data show that the presence of the swallowtail groups slightly raises the energy level of the filled a(2u)(pi) HOMO. EPR studies of the pi-cation radicals of the swallowtail porphyrins indicate that the torsional angle between the proton on the alkyl carbon and p-orbital on the meso carbon of the porphyrin is different from that of a porphyrin bearing linear pentyl groups. Regardless, the swallowtail substituents do not significantly affect the photophysical properties of the porphyrins or the electronic interactions between the porphyrins in the dyads. In particular, time-resolved spectroscopic studies indicate that facile excited-state energy transfer occurs in the ZnFb dyad, and EPR studies of the monocation radical of the Zn(2)-dyad show that interporphyrin ground-state hole transfer is rapid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app