Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Complement receptor 1 inhibitors for prevention of immune-mediated red cell destruction: potential use in transfusion therapy.

Blood 2003 June 16
Activation of complement cascade via the antibody-mediated classical pathway can initiate red blood cell (RBC) destruction, causing transfusion reactions and hemolytic anemia. In the present study, we have assessed the ability of a human recombinant soluble form of complement receptor 1 (sCR1) to inhibit complement-mediated RBC destruction in vitro and in vivo. Using an in vitro alloimmune incompatibility model, sCR1 inhibited complement activation and prevented hemolysis. Following transfusion of human group O RBCs into mice lacking detectable pre-existing antibodies against the transfused RBCs, systemic coadministration of 10 mg/kg sCR1, a dose well tolerated in human subjects for prevention of tissue injury, completely inhibited the in vivo clearance of the transfused RBCs and surface C3 deposition in the first hour after transfusion, correlating with the half-life of sCR1 in the circulation. Treatment with sCR1 increased the survival of transfused human group A RBCs in the circulation of mice with pre-existing anti-A for 2 hours after transfusion by 50%, reduced intravascular hemolysis, and lowered the levels of complement deposition (C3 and C4), but not immunoglobulin G (IgG) or IgM, on the transfused cells by 100-fold. We further identified potential functional domains in CR1 that can act to limit complement-mediated RBC destruction in vitro and in vivo. Collectively, our data highlight a potential use of CR1-based inhibitors for prevention of complement-dependent immune hemolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app