JOURNAL ARTICLE

Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model

Y Zhao, Y Xue, T D Oberley, K K Kiningham, S M Lin, H C Yen, H Majima, J Hines, D St Clair
Cancer Research 2001 August 15, 61 (16): 6082-8
11507057
Manganese superoxide dismutase (MnSOD) is a nuclear encoded primary antioxidant enzyme localized in mitochondria. Because expression of MnSOD plays a major role in maintaining cellular redox status and reactive oxygen species are known to play a role in signal transduction and carcinogenesis, we investigated the role of MnSOD in the development of cancer using a two-stage [7,12-dimethylbenz(a)-anthracene plus 12-O-tetradecanoylphorbol-13-acetate (TPA)] skin carcinogenesis model. Female transgenic mice expressing the human MnSOD gene in the skin and their nontransgenic counterparts were used in this study. Pathological examination demonstrated significant reduction of papilloma formation in transgenic mice. Quantitative analysis of 4-hydroxy-2-nonenal-modified proteins showed greater accumulation of oxidative damage products in nontransgenic compared with transgenic mice, and this oxidative damage was demonstrated to be present in both mitochondria and nucleus. TPA increased activator protein-1 (AP-1) binding activity within 6 h in nontransgenic mice, but increased AP-1 binding activity was delayed in the transgenic mice. Electrophoretic mobility shift assay, transcription of the target genes, and Western analysis studies indicated that the increased AP-1 binding activity was attributable to induction of the Jun but not the Fos protein families. Overexpression of MnSOD selectively inhibited the TPA-induced activation of protein kinase Cepsilon and prevented subsequent activation of c-Jun NH(2)-terminal kinase in response to TPA. Overall, these results indicate that MnSOD regulates both cellular redox status and selectively modulates PKCepsilon signaling, thereby delaying AP-1 activation and inhibiting tumor promotion, resulting in reduction of tumors in MnSOD transgenic mice.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
11507057
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"