Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group.

Plant Cell 2001 August
To better understand genetic events that accompany allopolyploid formation, we studied the rate and time of elimination of eight DNA sequences in F1 hybrids and newly formed allopolyploids of Aegilops and TRITICUM: In total, 35 interspecific and intergeneric F1 hybrids and 22 derived allopolyploids were analyzed and compared with their direct parental plants. The studied sequences exist in all the diploid species of the Triticeae but occur in only one genome, either in one homologous pair (chromosome-specific sequences [CSSs]) or in several pairs of the same genome (genome-specific sequences [GSSs]), in the polyploid wheats. It was found that rapid elimination of CSSs and GSSs is a general phenomenon in newly synthesized allopolyploids. Elimination of GSSs was already initiated in F1 plants and was completed in the second or third allopolyploid generation, whereas elimination of CSSs started in the first allopolyploid generation and was completed in the second or third generation. Sequence elimination started earlier in allopolyploids whose genome constitution was analogous to natural polyploids compared with allopolyploids that do not occur in nature. Elimination is a nonrandom and reproducible event whose direction was determined by the genomic combination of the hybrid or the allopolyploid. It was not affected by the genotype of the parental plants, by their cytoplasm, or by the ploidy level, and it did not result from intergenomic recombination. Allopolyploidy-induced sequence elimination occurred in a sizable fraction of the genome and in sequences that were apparently noncoding. This finding suggests a role in augmenting the differentiation of homoeologous chromosomes at the polyploid level, thereby providing the physical basis for the diploid-like meiotic behavior of newly formed allopolyploids. In our view, this rapid genome adjustment may have contributed to the successful establishment of newly formed allopolyploids as new species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app