Add like
Add dislike
Add to saved papers

Influence of photoperiod on the uptake of nitrogen and phosphorus in the water by Eichhornia crassipes and Salvinia auriculata.

The main goal of this research was to quantify the concentrations of total and ammonium N, nitrate, total and soluble P in the water in the presence of Eichhornia crassipes and Salvinia auriculata, which were submitted to two different photoperiods in a 24 hours incubation period in the laboratory. The macrophytes were incubated in plastic vials of approximately 1.5 litters, with a previously prepared solution with NH4NO3, NH4Cl, and KH2PO4. Eichhornia crassipes showed the highest average rate of reduction of all the nutrients analysed in relation to Salvinia auriculata. The largest photoperiod reflected in a higher average rate of reduction of nutrients, in both plants. Therefore, we may expect that in some periods of the year (e.g. summer), the aquatic macrophytes would show higher growth rates and higher rates of nitrogen and phosphorus absorption. These results are important for the implementation and management of wastewater treatment systems in tropical areas using aquatic macrophytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app