Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Universal DNA microarray method for multiplex detection of low abundance point mutations.

Cancers arise from the accumulation of multiple mutations in genes regulating cellular growth and differentiation. Identification of such mutations in numerous genes represents a significant challenge in genetic analysis, particularly when the majority of DNA in a tumor sample is from wild-type stroma. To overcome these difficulties, we have developed a new type of DNA microchip that combines polymerase chain reaction/ligase detection reaction (PCR/LDR) with "zip-code" hybridization. Suitably designed allele-specific LDR primers become covalently ligated to adjacent fluorescently labeled primers if and only if a mutation is present. The allele-specific LDR primers contain on their 5'-ends "zip-code complements" that are used to direct LDR products to specific zip-code addresses attached covalently to a three-dimensional gel-matrix array. Since zip-codes have no homology to either the target sequence or to other sequences in the genome, false signals due to mismatch hybridizations are not detected. The zip-code sequences remain constant and their complements can be appended to any set of LDR primers, making our zip-code arrays universal. Using the K- ras gene as a model system, multiplex PCR/LDR followed by hybridization to prototype 3x3 zip-code arrays correctly identified all mutations in tumor and cell line DNA. Mutations present at less than one per cent of the wild-type DNA level could be distinguished. Universal arrays may be used to rapidly detect low abundance mutations in any gene of interest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app