Add like
Add dislike
Add to saved papers

Assessing biological self-organization patterns using statistical complexity characteristics: a tool for diffusion tensor imaging analysis.

Magma 2024 July 28
OBJECT: Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are well-known and powerful imaging techniques for MRI. Although DTI evaluation has evolved continually in recent years, there are still struggles regarding quantitative measurements that can benefit brain areas that are consistently difficult to measure via diffusion-based methods, e.g., gray matter (GM). The present study proposes a new image processing technique based on diffusion distribution evaluation of López-Ruiz, Mancini and Calbet (LMC) complexity called diffusion complexity (DC).

MATERIALS AND METHODS: The OASIS-3 and TractoInferno open-science databases for healthy individuals were used, and all the codes are provided as open-source materials.

RESULTS: The DC map showed relevant signal characterization in brain tissues and structures, achieving contrast-to-noise ratio (CNR) gains of approximately 39% and 93%, respectively, compared to those of the FA and ADC maps.

DISCUSSION: In the special case of GM tissue, the DC map obtains its maximum signal level, showing the possibility of studying cortical and subcortical structures challenging for classical DTI quantitative formalism. The ability to apply the DC technique, which requires the same imaging acquisition for DTI and its potential to provide complementary information to study the brain's GM structures, can be a rich source of information for further neuroscience research and clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app