Add like
Add dislike
Add to saved papers

Evaluation of molecular residual disease in operable non-small cell lung cancer with gene fusions, MET exon skipping or de novo MET amplification.

Gene fusions and MET alterations are rare and difficult to detect in plasma samples. The clinical detection efficacy of molecular residual disease (MRD) based on circulating tumor DNA (ctDNA) in patients with non-small cell lung cancer (NSCLC) with these mutations remains unknown. This prospective, non-intervention study recruited 49 patients with operable NSCLC with actionable gene fusions (ALK, ROS1, RET, and FGFR1), MET exon 14 skipping or de novo MET amplification. We analyzed 43 tumor tissues and 111 serial perioperative plasma samples using 1021- and 338-gene panels, respectively. Detectable MRD correlated with a significantly higher recurrence rate (P < 0.001), yielding positive predictive values of 100% and 90.9%, and negative predictive values of 82.4% and 86.4% at landmark and longitudinal time points, respectively. Patients with detectable MRD showed reduced disease-free survival (DFS) compared to those with undetectable MRD (P < 0.001). Patients who harbored tissue-derived fusion/MET alterations in their MRD had reduced DFS compared to those who did not (P = 0.05). To our knowledge, this is the first comprehensive study on ctDNA-MRD clinical detection efficacy in operable NSCLC patients with gene fusions and MET alterations. Patients with detectable tissue-derived fusion/MET alterations in postoperative MRD had worse clinical outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app