Add like
Add dislike
Add to saved papers

Generation and characterization of nanobodies targeting GPCR.

Biophysics Reports 2024 Februrary 30
G protein-coupled receptors (GPCRs) are a large family of cell membrane proteins that are important targets for drug discovery. Nanobodies, also known as VHH (variable domains of heavy chain-only antibodies, HcAbs) antibodies, are small antibody fragments derived from camelids that have gained significant attention as potential therapeutics for targeting GPCRs due to their advantages over conventional antibodies. However, there are challenges in developing nanobodies targeting GPCRs, among which epitope accessibility is the most significant because the cell membrane partially shields the GPCR surface. We developed a universal protocol for making nanobodies targeting GPCRs using the cell membrane extract of GPCR-overexpressing HEK293 cells as the llama/alpaca immunization antigen. We constructed an immune VHH library and identified nanobodies by phage display bio-panning. The monoclonal nanobodies were recombinantly expressed in Escherichia coli (E. coli) and purified to characterize their binding potency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app