Add like
Add dislike
Add to saved papers

USP7 cardiomyocyte specific knockout causes disordered mitochondrial biogenesis and dynamics and early neonatal lethality in mice.

BACKGROUND: Ubiquitination is an enzymatic modification involving ubiquitin chains, that can be reversed by deubiquitination (DUB) enzymes. Ubiquitin-specific protease 7 (USP7), which is also known as herpes virus-associated ubiquitin-specific protease (HAUSP), has been shown to play a vital role in cardiovascular diseases. However, the underlying molecular mechanism by which USP7 regulates cardiomyocyte function has not been reported.

METHODS: To understand the physiological function of USP7 in the heart, we constructed cardiomyocyte-specific USP7 conditional knockout mice.

RESULTS: We found that homozygous knockout mice died approximately three weeks after birth, while heterozygous knockout mice grew normally into adulthood. Severe cardiac dysfunction, hypertrophy, fibrosis, and cell apoptosis were observed in cardiomyocyte-specific USP7 knockout mice, and these effects were accompanied by disordered mitochondrial dynamics and cardiometabolic-related proteins.

CONCLUSIONS: In summary, we investigated changes in the growth status and cardiac function of cardiomyocyte-specific USP7 knockout mice, and preliminarily explored the underlying mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app