Add like
Add dislike
Add to saved papers

Knock down of APE1 suppressed gastric cancer metastasis via improving immune disorders caused by myeloid-derived suppressor cells.

Cell Cycle 2024 May 9
Gastric cancer is a highly immunogenic malignancy. Immune tolerance facilitated by myeloid-derived suppressor cells (MDSCs) has been implicated in gastric cancer resistance mechanisms. The potential role of APE1 in regulating gastric cancer metastasis by targeting MDSCs remains uncertain. In this study, the plasmid Plxpsp-mGM-CSF was used to induce high expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in GES-1 cells. For tumor transplantation experiments, AGS, AGS+GM-CSF and AGS+GM-CSF-siAPE1 cell lines were established by transfection, followed by subcutaneous implantation of tumor cells. MDSCs, Treg cells, IgG, CD3 and CD8 levels were assessed. Transfection with siAPE1 significantly inhibited tumor growth compared to the AGS+GM-CSF group. APE1 gene knockdown modulated the immune system in gastric cancer mice, characterized by a decrease in MDSCs and an increase in Treg cells, IgG, CD3 and CD8. In addition, APE1 gene knockdown resulted in decreased levels of pro-MDSC cytokines (HGF, CCL5, IL-6, CCL12). Furthermore, APE1 gene knockdown inhibited proliferation, migration and invasion of AGS and MKN45 cells. AGS-GM-CSF cell transplantation increased MDSC levels and accelerated tumor growth, whereas APE1 knockdown reduced MDSC levels, inhibited tumor growth and attenuated inflammatory infiltration in gastric cancer tissues. Strategies targeting the APE1/MDSC axis offer a promising approach to the prevention and treatment of gastric cancer, providing new insights into its management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app