Pushkar Malakar, Didhiti Singha, Debopriyo Choudhury, Sudhanshu Shukla
The amino acid glutamine plays an important role in cell growth and proliferation. Reliance on glutamine has long been considered a hallmark of highly proliferating cancer cells. Development of strategies for cancer therapy that primarily target glutamine metabolism has been an active area of research. Glutamine depletion is associated with growth arrest and apoptosis-induced cell death; however, the molecular mechanisms involved in this process are not clearly understood. Here, we show that glutamine depletion activates the energetic stress AMPK pathway and inhibits mTORC1 activity...
September 28, 2023: Cell Cycle
Jasmine D Peake, Kalisse I Horne, Chiaki Noguchi, John P Gilligan, Eishi Noguchi
Alcohol contributes to cellular accumulation of acetaldehyde, a primary metabolite of alcohol and a major human carcinogen. Acetaldehyde can form DNA adducts and induce interstrand crosslinks (ICLs) that are repaired by the Fanconi anemia DNA repair pathway (FA pathway). Individuals with deficiency in acetaldehyde detoxification or in the FA pathway have an increased risk of squamous-cell carcinomas (SCCs) including those of the esophagus. In a recent report, we described the molecular basis of acetaldehyde-induced DNA damage in esophageal keratinocytes [1]...
September 25, 2023: Cell Cycle
Reema S Wahdan-Alaswad, Susan M Edgerton, Hyun Min Kim, Aik Choon Tan, Bryan R Haugen, Bolin Liu, Ann D Thor
Estrogen receptor (ER) α expression and associated signaling is a major driver of over two-thirds of all breast cancers (BC). ER targeting strategies are typically used as a first-line therapy in patients with steroid receptor positive (SR+) disease. Secondary resistance to anti-estrogenic agents may occur with clonal expansion and disease progression. Mechanisms underlying hormone resistance are an expanding field of significant translational importance. Cross-talk with other nuclear hormones, receptors, and signaling pathways, including thyroid hormones (TH) and their receptors (THRs), have been shown to promote endocrine therapy resistance in some studies...
September 18, 2023: Cell Cycle
Csenge Gal, Grace A Cochrane, Brian A Morgan, Charalampos Rallis, Jürg Bähler, Simon K Whitehall
Quiescence (G0) is a reversible non-dividing state that facilitates cellular survival in adverse conditions. Here, we demonstrate that the HIRA histone chaperone complex is required for the reversibility and longevity of nitrogen starvation-induced quiescence in Schizosaccharomyces pombe . The HIRA protein, Hip1 is not required for entry into G0 or the induction of autophagy. Although hip1 Δ cells retain metabolic activity in G0, they rapidly lose the ability to resume proliferation. After a short period in G0 (1 day), hip1 Δ mutants can resume cell growth in response to the restoration of a nitrogen source but do not efficiently reenter the vegetative cell cycle...
August 27, 2023: Cell Cycle
Tao Bi, Qianqian Lu, Xiaohong Pan, Fenglin Dong, Yejia Hu, Zongzhen Xu, Peng Xiu, Zhiqian Liu, Jie Li
Ferroptosis is an important mode of regulated cell death (RCD). Its inhibition is closely related to therapeutic resistance and poor prognosis in hepatocellular carcinoma (HCC). Previous reports have demonstrated ferroptosis as a biological process highly dependent on selective autophagy, such as ferritinophagy, lipophagy, and clockophagy. Our study also revealed a role for ER-phagy-mediated ferroptosis in HCC cells treated with multi-targeted tyrosine kinase inhibitors (TKIs). In the current study, we found that the homologous circular RNA (circRNA) of the family with sequence similarity 134, member B ( FAM134B ), hsa_circ_0128505 (was abbreviated as circFAM134B in the present study), was identified to specifically target ER-phagy to promote lenvatinib (LV)-induced ferroptosis using reactive oxygen species (ROS), Fe2+ , malondialdehyde (MDA), and western blot (WB) assays in HCC cells...
August 21, 2023: Cell Cycle
Kosuke Tsuji, Eiki Kikuchi, Yuta Takashima, Tetsuaki Shoji, Hirofumi Takahashi, Shotaro Ito, Daisuke Morinaga, Masahiro Kashima, Makie Maeda, Hidenori Kitai, Junko Kikuchi, Jun Sakakibara-Konishi, Satoshi Konno
Mitotic slippage, which enables cancer cells to bypass cell death by transitioning from mitosis to the G1 phase without undergoing normal cytokinesis, is one likely mechanism of paclitaxel (PTX) resistance. DNA double-strand breaks (DSBs) in the G1 phase are mainly repaired through non-homologous end joining (NHEJ). Therefore, inhibiting NHEJ could augment the PTX-induced cytotoxicity by impeding the repair of PTX-induced DSBs during the G1 phase following mitotic slippage. We aimed to evaluate the effects of NHEJ inhibition on mitotic slippage after PTX treatment in non-small cell lung cancer (NSCLC)...
August 17, 2023: Cell Cycle
Hao Zhang, Zheng Li, Juan Jiang, Yang Lei, Jingmao Xie, Yihui Liu, Bo Yi
Colorectal cancer is a common type of digestive tract cancer with a significant morbidity and death rate across the world, partially attributing to the metastasis-associated problems. In this study, integrative bioinformatics analyses were performed to identify genes that might contribute to colorectal cancer metastasis, and 293 genes were dramatically increased and 369 genes were decreased within colon cancer samples. Among up-regulated genes, top five genes correlated with colorectal cancer patient's prognosis were verified for expression in clinical samples and syntrophin beta 1 (SNTB1) was the most up-regulated...
August 17, 2023: Cell Cycle
Bowei Yang, Guang Wang, Yuhang Li, Tongxin Yang, Haixiang Guo, Pei Li, Jiongming Li
Nephrolithiasis is a common and frequently-occurring disease in the urinary system with high recurrence. The present study aimed to explore the protective effect and underlying mechanism of hydroxycitric acid (HCA) in hyperoxaluria-induced nephrolithiasis in vitro and in vivo . Crystal deposition and pathophysiological injury in rat models of glyoxylate-induced nephrolithiasis were examined using H&E staining. Cell models of nephrolithiasis were established by oxalate-treated renal tubular epithelial cells...
August 17, 2023: Cell Cycle
Chenqu Wu, Deming Li, Xun Cheng, Hao Gu, Yanqing Qian, Li Feng
Background: Cancer-associated fibroblast (CAF) exosomal miRNAs have gradually a hot spot in cancer therapy. This study mainly explores the effect of CAF-derived exosomal miR-29b-1-5p on gastric cancer (GC) cells. Methods: CAFs and exosomes were identified by Western blot and transmission electron microscopy. CAF-derived exosomes-GC cells co-culture systems were constructed. Effects of CAF-derived exosomal miR-29b-1-5p on GC cells were determined by cell counting kit-8, flow cytometry, wound healing, Transwell assays and Western blot...
August 16, 2023: Cell Cycle
Xia Pan, Daniela Giustarini, Florian Lang, Ranieri Rossi, Thomas Wieder, Martin Köberle, Mehrdad Ghashghaeinia
Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET. Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms. Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry...
July 31, 2023: Cell Cycle
Linlin Tian, Min He, Huafeng Fan, Hongying Zhang, Xiaoxiao Dong, Mengkai Qiao, Chenyu Tang, Yan Yu, Tong Chen, Nan Zhou
Coronavirus disease 2019 (COVID-19) is raging worldwide and causes an immense disease burden. Despite this, the biomarkers and targeting drugs of COVID-19 of differing severity remain largely unknown. Based on the GSE164805 dataset, we identified modules most critical for mild COVID-19 (mCOVID-19) and severe COVID-19 (sCOVID-19) through WGCNA, respectively. We subsequently constructed a protein-protein interaction network, and detected 16 hub genes for mCOVID-19 and 10 hub genes for sCOVID-19, followed by the prediction of upstream transcription factors (TFs) and kinases...
July 24, 2023: Cell Cycle
Zhihong Liu, Xin Zhou, Bo Chen, Ziyu Wu, Cuifeng Zhang, Changji Gu, Juan Li, Xiaodong Yang
BACKGROUND: The protein kinesin family member 26B (KIF26B) is aberrantly expressed in various cancers. However, its particular role and association with tumor immune infiltration in colon adenocarcinoma (COAD) remain unclear. METHODS: All original data were downloaded directly from The Cancer Genome Atlas (TCGA), UCSC Xena, and Gene Expression Omnibus (GEO) databases and processed with R 3.6.3. KIF26B expression was analyzed using Oncomine, TIMER, TCGA, GEO databases, and our clinical specimens...
July 12, 2023: Cell Cycle
Chi Zhang, ChengZhao Zhang, XinLu Liu, WenShuo Sun, HuanRan Liu
OBJECTIVE: Colorectal cancer (CRC) is a prevalent gastrointestinal tumor globally. Circular RNAs (circRNAs) have been identified as regulatory players in the pathogenesis of CRC. However, it is unclear whether hsa_circ_0050102 (circPGPEP1) affects the malignant progression and immune escape in CRC. METHODS: Bioinformatics analysis and circRNA in vivo precipitation experiments were performed to analyze and identify circRNAs that mediate immune escape in CRC. Using luciferase reporter assay, RIP, RNA pull-down assay, and FISH, the interaction between circPGPEP1, miR-515-5p, and nuclear factor of activated T-cell 5 (NFAT5) was identified...
July 9, 2023: Cell Cycle
Jianhua Zhang, Wanyi Tian, Fang Wang, Jiao Liu, Jiang Huang, Suwit Duangmano, Hao Liu, Minghua Liu, Zhuo Zhang, Xian Jiang
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical and life-threatening illness that causes severe dyspnea, and respiratory distress and is often caused by a variety of direct or indirect factors that damage the alveolar epithelium and capillary endothelial cells, leading to inflammation factors and macrophage infiltration. Macrophages play a crucial role in the progression of ALI/ARDS, exhibiting different polarized forms at different stages of the disease that control the disease outcome...
July 6, 2023: Cell Cycle
Qiuyun Xue, Yurong Huang, Chenglong Cheng, Yuting Wang, Faxue Liao, Qiangjun Duan, Xiao Wang, Chenggui Miao
Inadequate milk secretion and a lack of nutrients in humans and mammals are serious problems. It is of great significance to clarify the mechanisms of milk synthesis and treatment methods. Epigenetic modification, represented by RNA methylation, is an important way of gene expression regulation that profoundly affects human gene expression and participates in various physiological and pathological mechanisms. Epigenetic disorders also have an important impact on the production and secretion of milk. This review systematically summarized the research results of epigenetics in the process of lactation in PubMed, Web of Science, NSTL, and other databases and reviewed the effects of epigenetics on human and mammalian lactation, including miRNAs, circRNAs, lncRNAs, DNA methylations, and RNA methylations...
July 6, 2023: Cell Cycle
Haleema Azam, Shane Maher, Shane Clarke, William M Gallagher, Maria Prencipe
Castrate-resistant prostate cancer (CRPC) is challenging to treat, despite improvements with next-generation anti-androgens such as enzalutamide, due to acquired resistance. One of the mechanisms of such resistance includes aberrant activation of co-factors of the androgen receptor (AR), such as the serum response factor (SRF), which was associated with prostate cancer progression and resistance to enzalutamide. Here, we show that inhibition of SRF with three small molecules (CCG-1423, CCG-257081 and lestaurtinib), singly and in combination with enzalutamide, reduces cell viability in an isogenic model of CRPC...
June 28, 2023: Cell Cycle
Ali Molaei, Emad Molaei, A Wallace Hayes, Gholamreza Karimi
MasR is a critical element in the RAS accessory pathway that protects the heart against myocardial infarction, ischemia-reperfusion injury, and pathological remodeling by counteracting the effects of AT1R. This receptor is mainly stimulated by Ang 1-7, which is a bioactive metabolite of the angiotensin produced by ACE2. MasR activation attenuates ischemia-related myocardial damage by facilitating vasorelaxation, improving cell metabolism, reducing inflammation and oxidative stress, inhibiting thrombosis, and stabilizing atherosclerotic plaque...
June 26, 2023: Cell Cycle
Feng Bai, Xiong Liu, Xu Zhang, Zhuo Mao, He Wen, Jinshan Ma, Xin-Hai Pei
Only 3% of thyroid cancers are medullary thyroid carcinomas (MTCs), the rest are follicular epithelial cell derived non-MTCs (NMTCs). A dysfunctional INK4-CDK4-RB pathway is detected in most of NMTCs. DNA repair defects and genome instability are associated with NMTC dedifferentiation and aggressiveness. Whether inactivation of the INK4-CDK4-RB pathway induces NMTCs and how differentiation of NMTC cells is controlled remain elusive. In this study, we generated p18Ink4c and Brca1 singly and doubly deficient mice as well as p16Ink4a and Brca1 singly and doubly deficient mice...
June 22, 2023: Cell Cycle
Nicole J Camlin, Ilakkiya Venkatachalam, Janice P Evans
Tightly controlled fluctuations in kinase and phosphatase activity play important roles in regulating M-phase transitions. Protein Phosphatase 1 (PP1) is one of these phosphatases, with oscillations in PP1 activity driving mitotic M-phase. Evidence from a variety of experimental systems also points to roles in meiosis. Here, we report that PP1 is important for M-phase transitions through mouse oocyte meiosis. We employed a unique small-molecule approach to inhibit or activate PP1 at distinct phases of mouse oocyte meiosis...
June 20, 2023: Cell Cycle
Jiaying Bi, Dayu Wang, Fuquan Zhu, Xinyue Lu, Yan Xie, Huijun Liu, Meixia Wang, Xu He, Yuan Jiang, Ke Liu, Mingyue Zhao, Tingzhang Wang, Juan Li
Epigenetic status of fetal fibroblasts (FFs) is one of the crucial factors accounted for the success of somatic cell nuclear transfer and gene editing, which might inevitably be affected by passaging. But few systematic studies have been performed on the epigenetic status of passaged aging cells. Therefore, FFs from large white pig were in vitro passaged to the 5, 10, and 15 (F5, F10, and F15) passages in the present study to investigate the potential alteration of epigenetic status. Results indicated the senescence of FFs occurs with the passaging, as assessed by the weakened growth rate, increased β-gal expression, and so on...
June 20, 2023: Cell Cycle
Fetch more papers »
Fetching more papers... Fetching...
Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"

We want to hear from doctors like you!

Take a second to answer a survey question.