Add like
Add dislike
Add to saved papers

The cellular expression patterns of gdnfa and gdnfb in the gonads of Nile tilapia and their differential response to retinoic acid.

Theriogenology 2024 May 4
In mammals, glial cell derived neurotrophic factor (GDNF) plays a critical role in the self-renewal and maintenance of spermatogonial stem cells (SSCs) in testis and oogenesis in ovary, whilst retinoic acid (RA), the key factor of meiosis initiation, can downregulate its expression. Unlike mammals, two Gdnf replication genes are widely present in teleost fishes, however, our understanding of them is still poor. In the present study, two paralogous gdnf from Nile tilapia (Oreochromis niloticus), namely as Ongdnfa and Ongdnfb, were characterized, and then their cellular expression profiles in testis and ovary and responsiveness to RA treatment at the tissue and cellular levels were investigated. In phylogenetic tree, the Gdnfa and Gdnfb from teleost fishes were clustered into two different subclasses, respectively, and then clustered with the homologs from cartilaginous fish and tetrapods, suggesting that OnGdnfa and OnGdnfb are orthologous to GDNF and paralogous to each other. Ongdnfa is expressed in Sertoli cells and Leydig cells in testis and oocytes in ovary. The expression pattern of Ongdnfb is similar to Ongdnfa. In the ex vivo testicular organ culture, RA down-regulated the expression of Ongdnfa, whereas up-regulated the expression of Ongdnfb (P < 0.05), suggesting that they have differential responsiveness to RA signaling. RA treatment of the cultured cells derived from adult Nile tilapia testis which have the expression of RA receptors (RAR), Ongdnfa and Ongdnfb further confirmed the above result. Collectively, our study suggests that Ongdnfa and Ongdnfb have non-germline expression patterns in testis and germline expression patterns in ovary; furthermore, they have differential responsiveness to RA signaling, implying that they might have differential biological functions. This study broadens and enriches our understanding of fish GDNF homologs and lays foundation for the study of their biological functions in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app