We have located links that may give you full text access.
Intraocular Immune Response in Human Uveitis: Time to Look Beyond Animal Models.
American Journal of Ophthalmology 2024 May 3
PURPOSE: To review the current and future approaches to investigating the intraocular immune response in human uveitis.
DESIGN: Perspective.
METHODS: Review of currently available methods for investigating the immune response in ocular tissues and fluids in patients with intraocular inflammation/ uveitis. The advantages and disadvantages of human studies have been compared to those of animal models of uveitis.
RESULTS: Animal models, while being excellent tools for mechanistic studies, do not replicate the clinical and immunologic heterogeneity of human uveitis. Opportunities for immunological studies in human uveitis are mostly limited to histological studies, or sampling of intraocular fluids and peripheral blood. Histopathological studies can be enhanced by revisiting published historical data, tissue repositories, or autopsy specimens. Intraocular fluids can be investigated by a variety of techniques. Among these, flow cytometry and single-cell RNA sequencing (scRNAseq) provide single-cell resolution. While the current technology is costly and labor-intensive, scRNAseq is less limited by the low cellular yield from intraocular fluids and allows unbiased immune profiling enabling discovery of new cellular subsets. Immunological phenotypes uncovered from human data can be further investigated in animal studies.
CONCLUSION: The diversity of the intraocular immune response in uveitis patients remains challenging but can be studied by multiple techniques including histopathology, flow cytometry, and scRNAseq. Human data can be combined with animal studies for translating uveitis research into novel therapies.
DESIGN: Perspective.
METHODS: Review of currently available methods for investigating the immune response in ocular tissues and fluids in patients with intraocular inflammation/ uveitis. The advantages and disadvantages of human studies have been compared to those of animal models of uveitis.
RESULTS: Animal models, while being excellent tools for mechanistic studies, do not replicate the clinical and immunologic heterogeneity of human uveitis. Opportunities for immunological studies in human uveitis are mostly limited to histological studies, or sampling of intraocular fluids and peripheral blood. Histopathological studies can be enhanced by revisiting published historical data, tissue repositories, or autopsy specimens. Intraocular fluids can be investigated by a variety of techniques. Among these, flow cytometry and single-cell RNA sequencing (scRNAseq) provide single-cell resolution. While the current technology is costly and labor-intensive, scRNAseq is less limited by the low cellular yield from intraocular fluids and allows unbiased immune profiling enabling discovery of new cellular subsets. Immunological phenotypes uncovered from human data can be further investigated in animal studies.
CONCLUSION: The diversity of the intraocular immune response in uveitis patients remains challenging but can be studied by multiple techniques including histopathology, flow cytometry, and scRNAseq. Human data can be combined with animal studies for translating uveitis research into novel therapies.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app