Add like
Add dislike
Add to saved papers

Stochastic Electrochemical Measurement of a Biofouling Layer on Gold.

Adsorption of a biofouling layer on the surface of biosensors decreases the electrochemical activity and hence shortens the service life of biosensors, particularly implantable and wearable biosensors. Real-time quantification of the loss of activity is important for in situ assessment of performance while presenting an opportunity to compensate for the loss of activity and recalibrate the sensor to extend the service life. Here, we introduce an electrochemical noise measurement technique as a tool for the quantification of the formation of a biofouling layer on the surface of gold. The technique uniquely affords thermodynamic and kinetic information without applying an external bias (potential and/or current), hence allowing the system to be appraised in its innate state. The technique relies on the analysis of non-faradaic current and potential fluctuations that are intrinsically generated by the interaction of charged species at the electrode surface, i.e., gold. An analytical model is extended to explain the significance of parameters drawn from statistical analysis of the noise signal. This concept is then examined in buffered media in the presence of albumin, a common protein in the blood and a known source of a fouling layer in biological systems. Results indicate that the statistical analysis of the noise signal can quantify the loss of electrochemical activity, which is also corroborated by impedance spectroscopy as a complementary technique.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app