Journal Article
Review
Add like
Add dislike
Add to saved papers

Cardiac conduction diseases: understanding the molecular mechanisms to uncover targets for future treatments.

INTRODUCTION: The cardiac conduction system (CCS) is crucial for maintaining adequate cardiac frequency at rest and modulation during exercise. Furthermore, the atrioventricular node and His-Purkinje system are essential for maintaining atrioventricular and interventricular synchrony and consequently maintaining an adequate cardiac output.

AREAS COVERED: In this review article, we examine the anatomy, physiology, and pathophysiology of the CCS. We then discuss in detail the most common genetic mutations and the molecular mechanisms of cardiac conduction disease (CCD) and provide our perspectives on future research and therapeutic opportunities in this field.

EXPERT OPINION: Significant advancement has been made in understanding the molecular mechanisms of CCD, including the recognition of the heterogeneous signaling at the subcellular levels of sinoatrial node, the involvement of inflammatory and autoimmune mechanisms, and the potential impact of epigenetic regulations on CCD. However, the current treatment of CCD manifested as bradycardia still relies primarily on cardiovascular implantable electronic devices (CIEDs). On the other hand, an If specific inhibitor was developed to treat inappropriate sinus tachycardia and sinus tachycardia in heart failure patients with reduced ejection fraction. More work is needed to translate current knowledge into pharmacologic or genetic interventions for the management of CCDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app