Add like
Add dislike
Add to saved papers

LiF-Rich Solid Electrolyte Interphase Formation by Establishing Sacrificial Layer on the Separator.

Small 2024 May 4
The formation of a stable solid electrolyte interphase (SEI) layer is crucial for enhancing the safety and lifespan of Li metal batteries. Fundamentally, a homogeneous Li+ behavior by controlling the chemical reaction at the anode/electrolyte interface is the key to establishing a stable SEI layer. However, due to the highly reactive nature of Li metal anodes (LMAs), controlling the movement of Li+ at the anode/electrolyte interface remains challenging. Here, an advanced approach is proposed for coating a sacrificial layer called fluorinated self-assembled monolayer (FSL) on a boehmite-coated polyethylene (BPE) separator to form a stable SEI layer. By leveraging the strong affinity between the fluorine functional group and Li+ , the rapid formation of a LiF-rich SEI layer in the cell production and early cycling stage is facilitated. This initial stable SEI formation promotes the subsequent homogeneous Li+ flux, thereby improving the LMA stability and yielding an enhanced battery lifespan. Further, the mechanism behind the stable SEI layer generation by controlling the Li+ dynamics through the FSL-treated BPE separator is comprehensively verified. Overall, this research offers significant contributions to the energy storage field by addressing challenges associated with LMAs, thus highlighting the importance of interfacial control in achieving a stable SEI layer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app