Add like
Add dislike
Add to saved papers

Effect of Al and Mn substitutions on hydrogen activation performances of La-Ni-Al-Mn alloy.

Heliyon 2024 April 31
To interpret the effect of Al and Mn substitutions on activation performances of La-Ni-Al-Mn alloy, the initial activation curve has been measured, which shows that the incubation time of activation is prolonged with the increase of Al content in alloy, while shortened duo to Mn substitution. Further, the first-principles calculations are employed. We find that (1) (100)/(010) surface of LaNi5 is the most stable and its stability can be improved by Al substitution for Ni while decreased by Mn substitution; (2) the preferential hydrogen adsorption sites are the hole and Ni (or Mn)-top sites; (3) Al and Mn substitutions can increase the hydrogen adsorption stability, but Al doping decreases the number of available sites, therefore retarding activation, while Mn doping guarantees the number of available sites, making activation easier; (4) H bonds covalently with neighbor Ni (or Mn) and ionically with La, together determining the stability of hydrogen adsorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app