Add like
Add dislike
Add to saved papers

In Vitro Effects of Boric Acid on Cell Cycle, Apoptosis, and miRNAs in Medullary Thyroid Cancer Cells.

Medullary thyroid cancer (MTC) is a highly aggressive and chemotherapy-resistant cancer originating from the thyroid's parafollicular C cells. Due to its resistance to conventional treatments, alternative therapies such as boric acid have been explored. Boric acid, a boron-based compound, has shown anticarcinogenic effects, positioning it as a potential treatment option for MTC. TT medullary thyroid carcinoma cell line (TT cells) and human thyroid fibroblast (HThF cells) were utilized for the cell culture experiments. Cell viability was assessed using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. Total RNA was extracted using Trizol reagent for gene expression and microRNA (miRNA) analysis via reverse transcription-polymerase chain reaction (RT-PCR). The extent of apoptosis induced by boric acid was determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Colony formation assays were conducted to evaluate the impact of boric acid on the colony-forming ability of MTC cells. At 48 h, 50% inhibitory concentration (IC50) of boric acid was found to be 35 μM. Treatment with boric acid resulted in significant modulation of apoptosis-related genes and miRNAs, including increased expression of phorbol-12-myristate-13-acetate-induced protein 1(NOXA), apoptotic protease activating factor 1 (APAF-1), Bcl-2-associated X protein (Bax), caspase-3, and caspase-9. In contrast, the expression of B cell lymphoma 2 (Bcl2), B cell lymphoma- extra-large (Bcl-xl), and microRNA-21 (miR-21), which are linked to the aggressiveness of MTC, was significantly reduced. The TUNEL assay indicated a 14% apoptosis rate, and there was a 67.9% reduction in colony formation, as shown by the colony formation assay. Our study suggests that boric acid may have anticancer activity in MTC by modulating apoptotic pathways. These findings suggest that boric acid could be a potential therapeutic agent for MTC and possibly for other malignancies with similar pathogenic mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app