Journal Article
Review
Add like
Add dislike
Add to saved papers

TRP Channels in Excitotoxicity.

Glutamate excitotoxicity is a central mechanism contributing to cellular dysfunction and death in various neurological disorders and diseases, such as stroke, traumatic brain injury, epilepsy, schizophrenia, addiction, mood disorders, Huntington's disease, Alzheimer's disease, Parkinson's disease, multiple sclerosis, pathologic pain, and even normal aging-related changes. This detrimental effect emerges from glutamate binding to glutamate receptors, including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, N -methyl-d-aspartate receptors, kainate receptors, and GluD receptors. Thus, excitotoxicity could be prevented by targeting glutamate receptors and their downstream signaling pathways. However, almost all the glutamate receptor antagonists failed to attenuate excitotoxicity in human patients, mainly due to the limited understanding of the underlying mechanisms regulating excitotoxicity. Transient receptor potential (TRP) channels serve as ancient cellular sensors capable of detecting and responding to both external and internal stimuli. The study of human TRP channels has flourished in recent decades since the initial discovery of mammalian TRP in 1995. These channels have been found to play pivotal roles in numerous pathologic conditions, including excitotoxicity. In this review, our focus centers on exploring the intricate interactions between TRP channels and glutamate receptors in excitotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app