Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Targeted Knockdown of Hepatic Δ-5 Fatty Acid Desaturase FADS1 Aggravates Atherosclerosis in ApoE -/- Mice.

BACKGROUND: The endogenous metabolism of polyunsaturated fatty acids is regulated by the fatty acid desaturase (FADS) gene cluster and is strongly associated with diseases such as atherosclerosis, dyslipidemia, and type 2 diabetes. However, the association between FADS and atherosclerosis remains a subject of debate.

METHODS: In this study, we specifically investigated the physiological role of Δ-5 fatty acid desaturase (FADS1) in aortic and peripheral vessel (namely, the femoral artery) atherosclerosis by targeting the selective knockdown of hepatic Fads1 in apolipoprotein E-null (ApoE-⁣/-) mice with antisense oligonucleotides (ASOs).

RESULTS: Knockdown of hepatic Fads1 in ApoE-⁣/- mice exacerbated aortic atherosclerosis and non-alcoholic fatty liver disease (NAFLD), resulting in weight loss. Upregulation of FADS1 mRNA expression in more severe atherosclerosis vascular tissues potentially caused the upregulation of angiopoietin-like 4 expression.

CONCLUSIONS: Our study demonstrated that knockdown of hepatic Fads1 in ApoE-⁣/- mice aggravates spontaneous atherosclerosis and NAFLD but does not affect peripheral atherosclerosis (femoral artery) induced by vascular cuff combined with tandem stenosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app