Add like
Add dislike
Add to saved papers

Composites with immobilized bioactive spirulina on an inorganic substrate (yellow clay, hydroxyapatite, SiO2, TiO2, ZnO).

In order to improve the structural properties of clays and composites of powdered spirulina, clay, nanosilica, hydroxyapatite, TiO2 and ZnO were used as an additive for mechanical processing. As a result, composites with natural nanostructured materials (NNM) are prepared with improved structural properties and bioactivity. The mixtures based on NNM with crystalline kaolinite, clays and admixtures were processed in a knife mill. The materials were characterized using FTIR spectroscopy, nitrogen adsorption and desorption, SEM release of bioactive components (anthocyanin 0,004 - 0,07 mg/g; chlorophyll 20 - 29 mg/g), composite toxicity level (below 25%), particle size measurement and surface charge density, zeta potential. Adsorption enthalpies during the formation of an intermolecular complex during the interactions of an anthocyanin molecule with the appropriate component of the composite were also calculated. There are regularities in the characteristics depending on the type of NNM, particle morphology and textural features of solids. The morphological and structural properties of the components changed slighty in the blends because the processing was conducted under relatively low mechanical stress. The morphological, textural and structural characteristics of the composites as well as the transformation to a nanostructured state, assume great bioactive activity of the composites, interesting for practical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app