Add like
Add dislike
Add to saved papers

A preliminary study unveils CISD2 as a ferroptosis-related therapeutic target for recurrent spontaneous abortion through immunological analysis and two-sample mendelian randomization.

Recurrent spontaneous abortion (RSA) affects approximately 1 % of women striving for conception, posing a significant clinical challenge. This study aimed to identify a prognostic signature in RSA and elucidate its molecular mechanisms. Prognostic gene impacts were further assessed in HTR-8/SVneo and human primary extravillous trophoblast (EVT) cells in vitro experiments. A total of 6168 differentially expressed genes (DEGs) were identified, including 3035 upregulated and 3133 downregulated genes. WGCNA pinpointed 8 significant modules and 31 ferroptosis-related DEGs in RSA. Optimal clustering classified RSA patients into three distinct subgroups, showing notable differences in immune cell composition. Six feature genes (AEBP2, CISD2, PML, RGS4, SRSF9, STK11) were identified. The diagnostic model showed high predictive capabilities (AUC: 0.966). Mendelian randomization indicated a significant association between CISD2 levels and RSA (OR: 1.069, P-value: 0.049). Furthermore, the downregulation of CISD2 promotes ferroptosis in HTR-8/SVneo and human primary EVT cells. CISD2 emerged as a pivotal gene in RSA, serving as a ferroptosis-related therapeutic target. The diagnostic model based on gene expression and Mendelian randomization provides novel insights into the pathogenesis of RSA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app