Add like
Add dislike
Add to saved papers

Tunnel-Structured Phosphate Exhibiting High Proton Conductivity and Thermal Stability over a Wide Intermediate Temperature Range.

Inorganic Chemistry 2024 April 27
For the practical application of fuel cells in vehicles, it is a challenge to develop a proton solid electrolyte that coexhibits thermal stability and high proton conductivity at wide intermediate temperatures. Here, we report on the tunnel structured phosphate KNi1- x H2 x (PO3 )3 ·y H2 O, which exhibits high proton conductivity at room temperature up to 500 °C, with the conductivity value reaching 1.7 × 10-2 S cm-1 at 275 °C for x = 0.18. This material, composed of the smallest cations that form the tunnel framework with face-shared (KO6 ) and (NiO6 ) chains and PO4 tetrahedral chains, retained the rigid framework up to 600 °C. Two oxygen sites of water molecules located adjacent to each other along the PO4 tetrahedral chains in the tunnel provided the proton conduction pathway. The sample maintained a conductivity of 5.0 × 10-3 S cm-1 for 10 h at 150 °C while changing the measurement atmosphere to a N2 gas flow, a 4% H2 -96% Ar gas flow, and an O2 gas flow. The conductivity value at x = 0.18 obtained from the DC measurement was in the order of 10-6 S cm-1 , close to the instrument's measurement limit. These results demonstrate that tunnel phosphate has potential as a proton solid electrolyte for next-generation fuel cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app