Add like
Add dislike
Add to saved papers

CHOP regulated by METTL14-m6A affects cell cycle arrest and regorafenib sensitivity in HCC cells.

BMC Cancer 2024 April 26
BACKGROUND: Regorafenib, a multi-targeted kinase inhibitor, has been used in the treatment of Hepatocellular carcinoma (HCC). The purpose of this study is to investigate the mechanism of Regorafenib in HCC.

METHODS: Regorafenib's impact on the sensitivity of HCC cells was assessed using CCK8. Differential gene expression analysis was performed by conducting mRNA sequencing after treatment with Regorafenib. The m6A methylation status of CHOP and differential expression of m6A methylation-related proteins were assessed by RIP and Western Blot. To explore the molecular mechanisms involved in the therapeutic effects of Regorafenib in HCC and the impact of METTL14 and CHOP on Regorafenib treatment, we employed shRNA/overexpression approaches to transfect METTL14 and CHOP genes, as well as conducted in vivo experiments.

RESULTS: Treatment with Regorafenib led to a notable decrease in viability and proliferation of SK-Hep-1 and HCC-LM3 cells. The expression level of CHOP was upregulated after Regorafenib intervention, and CHOP underwent m6A methylation. Among the m6A methylation-related proteins, METTL14 exhibited the most significant downregulation. Mechanistic studies revealed that Regorafenib regulated the cell cycle arrest in HCC through METTL14-mediated modulation of CHOP, and the METTL14/CHOP axis affected the sensitivity of HCC to Regorafenib. In vivo, CHOP enhanced the anticancer effect of Regorafenib.

CONCLUSION: The inhibition of HCC development by Regorafenib is attributed to its modulation of m6A expression of CHOP, mediated by METTL14, and the METTL14/CHOP axis enhances the sensitivity of HCC to Regorafenib. These findings provide insights into the treatment of HCC and the issue of drug resistance to Regorafenib.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app