Add like
Add dislike
Add to saved papers

Multiple cholinergic receptor subtypes coordinate dual modulation of acetylcholine on anterior and posterior paraventricular thalamic neurons.

Paraventricular thalamus (PVT) plays important roles in the regulation of emotion and motivation through connecting many brain structures including the midbrain and the limbic system. Although acetylcholine (ACh) neurons of the midbrain were reported to send projections to PVT, little is known about how cholinergic signaling regulates PVT neurons. Here, we used both RNAscope and slice patch-clamp recordings to characterize cholinergic receptor expression and ACh modulation of PVT neurons in mice. We found ACh excited a majority of anterior PVT (aPVT) neurons but predominantly inhibited posterior PVT (pPVT) neurons. Compared to pPVT with more inhibitory M2 receptors, aPVT expressed higher levels of all excitatory receptor subtypes including nicotinic α4, α7, and muscarinic M1 and M3. The ACh-induced excitation was mimicked by nicotine and antagonized by selective blockers for α4β2 and α7 nicotinic ACh receptor (nAChR) subtypes as well as selective antagonists for M1 and M3 muscarinic ACh receptors (mAChR). The ACh-induced inhibition was attenuated by selective M2 and M4 mAChR receptor antagonists. Furthermore, we found ACh increased the frequency of excitatory postsynaptic currents (EPSCs) on a majority of aPVT neurons but decreased EPSC frequency on a larger number of pPVT neurons. In addition, ACh caused an acute increase followed by a lasting reduction in inhibitory postsynaptic currents (IPSCs) on PVT neurons of both subregions. Together, these data suggest that multiple AChR subtypes coordinate a differential modulation of ACh on aPVT and pPVT neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app