Add like
Add dislike
Add to saved papers

Comparative steroidogenic effects of hexafluoropropylene oxide trimer acid (HFPO-TA) and perfluorooctanoic acid (PFOA): Regulation of histone modifications.

As a widely used alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been detected in the environment and humans; however, little is known regarding its male reproductive toxicity. To compare the effects of HFPO-TA on steroid hormone synthesis with PFOA, we exposed Leydig cells (MLTC-1) to non-lethal doses (0.1, 1, and 10 μM) of PFOA and HFPO-TA for 48 hours. It was found that the levels of steroid hormones, 17α-hydroxyprogesterone (OHP), androstenedione (ASD), and testosterone (T) were significantly increased in 1 and 10 μM of PFOA and HFPO-TA groups, with greater elevation being observed in the HFPO-TA groups than in the PFOA groups at 10 μM. We further showed that the two rate-limiting steroidogenic genes (Star and Cyp11a1) were up-regulated, while Hsd3b, Cyp17a1, and Hsd17b were down-regulated or unchanged after PFOA/HFPO-TA exposure. Moreover, PFOA exposure significantly up-regulated histone H3K4me1/3 and H3K9me1, while down-regulated H3K4me2 and H3K9me2/3 levels. By contrast, H3K4me2/3 and H3K9me2/3 were enhanced, while H3K4me1 and H3K9me1 were repressed after HFPO-TA treatment. It was further confirmed that H3K4me1/3 were increased and H3K9me2 was decreased in Star and Cyp11a1 promoters by PFOA, while HFPO-TA increased H3K4me2/3 and decreased H3K9me1 in the two gene promoters. Therefore, we propose that low levels of PFOA/HFPO-TA enhance the expression of Star and Cyp11a1 by regulating H3K4 and H3K9 methylation, thus stimulating the production of steroid hormones in MLTC-1 cells. Collectively, HFPO-TA exhibits stronger effects on steroidogenesis compared to PFOA, which may be ascribed to the distinct regulation of histone modifications. These data suggest that HFPO-TA does not appear to be a safer alternative to PFOA on the aspect of male reproductive toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app