Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sources and pathways of carbon and nitrogen of macrophytes and sediments using stable isotopes in Al-Kharrar Lagoon, eastern Red Sea coast, Saudi Arabia.

Elemental ratios (δ13C, δ15N and C/N) and carbon and nitrogen concentrations in macrophytes, sediments and sponges of the hypersaline Al-Kharrar Lagoon (KL), central eastern Red Sea coast, were measured to distinguish their sources, pathways and see how they have been influenced by biogeochemical processes and terrestrial inputs. The mangroves and halophytes showed the most depleted δ13C values of -27.07±0.2 ‰ and -28.34±0.4 ‰, respectively, indicating their preferential 12C uptake, similar to C3-photosynthetic plants, except for the halophytes Atriplex sp. and Suaeda vermiculata which showed δ13C of -14.31±0.6 ‰, similar to C4-plants. Macroalgae were divided into A and B groups based on their δ13C values. The δ13C of macroalgae A averaged -15.41±0.4 ‰, whereas macroalgae B and seagrasses showed values of -7.41±0.8 ‰ and -7.98 ‰, suggesting uptake of HCO3- as a source for CO2 during photosynthesis. The δ13C of sponges was -10.7±0.3 ‰, suggesting that macroalgae and seagrasses are their main favoured diets. Substrates of all these taxa showed δ13C of -15.52±0.8 ‰, suggesting the KL is at present a macroalgae-dominated lagoon. The δ15N in taxa/sediments averaged 1.68 ‰, suggesting that atmospheric N2-fixation is the main source of nitrogen in/around the lagoon. The heaviest δ15N (10.58 ‰) in halophytes growing in algal mats and sabkha is possibly due to denitrification and ammonia evaporation. The macrophytes in the KL showed high C %, N %, and C/N ratios, but this is not indicated in their substrates due possibly to a rapid turnover of dense, hypersaline waters carrying most of the detached organic materials out into the Red Sea. The δ13C allowed separation of subaerial from aquatic macrophytes, a proxy that could be used when interpreting paleo-sea level or paleoclimatic changes from the coastal marine sediments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app