Add like
Add dislike
Add to saved papers

Radiation Biological Toximetry Using Circulating Cell-Free DNA (cfDNA) for Rapid Radiation/Nuclear Triage.

Radiation Research 2024 April 26
Optimal triage biodosimetry would include risk stratification within minutes, and it would provide useful triage despite heterogeneous dosimetry, cytokine therapy, mixed radiation quality, race, and age. For regulatory approval, the U.S. Food and Drug Administration (FDA) Biodosimetry Guidance requires suitability for purpose and a validated species-independent mechanism. Circulating cell-free DNA (cfDNA) concentration assays may provide such triage information. To test this hypothesis, cfDNA concentrations were measured in unprocessed monkey plasma using a branched DNA (bDNA) technique with a laboratory developed test. Therefore, cfDNA concentration measurements are increasingly used in radiation oncology clinics to predict side effect risk. The cfDNA levels, along with hematopoietic parameters, were measured over a 7-day period in Rhesus macaques receiving total body radiation doses ranging from 1 to 6.5 Gy. Low-dose irradiation (0-2 Gy) was easily distinguished from high-dose whole-body exposures (5.5 and 6.5 Gy). Fold changes in cfDNA in the monkey model were comparable to those measured in a bone marrow transplant patient receiving a supralethal radiation dose, suggesting that the lethal threshold of cfDNA concentrations may be similar across species. Average cfDNA levels were 50 ± 40 ng/mL [±1 standard deviation (SD)] pre-irradiation, 120 ± 13 ng/mL at 1 Gy; 242 ± 71 ng/mL at 2 Gy; 607 ± 54 at 5.5 Gy; and 1585 ± 351 at 6.5 Gy (±1 SD). There was an exponential increase in cfDNA concentration with radiation dose. Comparison of the monkey model with the mouse model and the Guskova model, developed using Chernobyl responder data, further demonstrated correlation across species, supporting a similar mechanism of action. The test is available commercially in a Clinical Laboratory Improvement Amendments (CLIA) ready form in the U.S. and the European Union. The remaining challenges include developing methods for further simplification of specimen processing and assay evaluation, as well as more accurate calibration of the triage category with cfDNA concentration cutoffs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app