Add like
Add dislike
Add to saved papers

Ozone Exposure Limits Cardiorespiratory Function During Maximal Cycling Exercise in Endurance Athletes.

Ground-level ozone (O3 ) is a potent air pollutant well recognized to acutely induce adverse respiratory symptoms and impairments in pulmonary function. However, it is unclear how the hyperpnea of exercise may modulate these effects, and the subsequent consequences on exercise performance. We tested the hypothesis that pulmonary function and exercise capability would be diminished, and symptom development would be increased during peak real-world levels of O3 exposure compared to room air. Twenty aerobically trained participants [13M, 7F; maximal O2 uptake (O2max ), 64.1 ± 7.0 mL·kg-1 ·min-1 )] completed a three-visit double-blinded, randomized crossover trial. Following a screening visit, participants were exposed to 170 ppb O3 or room air (<10 ppb O3 ) on separate visits during exercise trials, consisting of a 25-minute moderate intensity warmup, 30-minute heavy intensity bout, and a subsequent time-to-exhaustion (TTE) performance test. No differences in O2 uptake or ventilation were observed during submaximal exercise between conditions. During the TTE test, we observed significantly lower end-exercise O2 uptake (-3.2 ± 4.3%, p=0.004), minute ventilation (-3.2 ± 6.5%, p=0.043), tidal volume (-3.6 ± 5.1%, p=0.008), and a trend towards lower exercise duration in O3 compared to room air(-10.8 ± 26.5%, p=0.092). As decreases in O2 uptake and alterations in respiratory pattern were also present at matched time segments between conditions, a limitation of oxygen transport seems likely during maximal exercise. A more comprehensive understanding of the direct mechanisms that limit oxygen transport during exercise in high-pollutant concentrations is key for mitigating performance changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app