Add like
Add dislike
Add to saved papers

Novel electrocatalytic capacitive deionization with catalytic electrodes for selective phosphonate degradation: Performance and mechanism.

Water Research 2024 April 24
Phosphonate is becoming a global interest and concern owing to its environment risk and potential value. Degradation of phosphonate into phosphate followed by the recovery is regarded as a promising strategy to control phosphonate pollution, relieve phosphorus crisis, and promote phosphorus cycle. Given these objectives, an anion-membrane-coated-electrode (A-MCE) doped with Fe-Co based carbon catalyst and cation-membrane-coated-electrode (C-MCE) doped with carbon-based catalyst were prepared as catalytic electrodes, and a novel electrocatalytic capacitive deionization (E-CDI) was developed. During charging process, phosphonate was enriched around A-MCE surface based on electrostatic attraction, ligand exchange, and hydrogen bond. Meanwhile, Fe2+ and Co2+ were self-oxidized into Fe3+ and Co3+ , forming a complex with enriched phosphonate and enabling an intramolecular electron transfer process for phosphonate degradation. Additionally, benefiting from the stable dissolved oxygen and high oxygen reduction reaction activity of C-MCE, hydrogen peroxide accumulated in E-CDI (158 μM) and thus hydroxyl radicals (·OH) were generated by activation. E-CDI provided an ideal platform for the effective reaction between ·OH and phosphonate, avoiding the loss of ·OH and triggering selective degradation of most phosphonate. After charging for 70 min, approximately 89.9% of phosphonate was degraded into phosphate, and phosphate was subsequently adsorbed by A-MCE. Results also showed that phosphonate degradation was highly dependent on solution pH and voltage, and was insignificantly affected by electrolyte concentration. Compared to traditional advanced oxidation processes, E-CDI exhibited a higher degradation efficiency, lower cost, and less sensitive to co-existed ions in treating simulated wastewaters. Self-enhanced and selective degradation of phosphonate, and in-situ phosphate adsorption were simultaneously achieved for the first time by a E-CDI system, showing high promise in treating organic-containing saline wastewaters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app