Add like
Add dislike
Add to saved papers

Influence of donor-acceptor interactions on MLCT hole reconfiguration in {Ru(bpy)} chromophores.

In MLCT chromophores, internal conversion (IC) in the form of hole reconfiguration pathways (HR) is a major source of dissipation of the absorbed photon energy. Therefore, it is desirable to minimize their impact in energy conversion schemes by slowing them down. According to previous findings on {Ru(bpy)} chromophores, donor-acceptor interactions between the Ru ion and the ligand scaffold might allow to control HR/IC rates. Here, a series of [Ru(tpm)(bpy)(R-py)]2+ chromophores, where tpm is tris(1-pyrazolyl)methane, bpy is 2,2'-bipyridine and R-py is a 4-substituted pyridine, were prepared and fully characterized employing electrochemistry, spectroelectrochemistry, steady-state absorption/emission spectroscopy and electronic structure computations based on DFT/TD-DFT. Their excited-state decay was monitored using nanosecond and femtosecond transient absorption spectroscopy. HR/IC lifetimes as slow as 568 ps were obtained in DMSO at room temperature, twice as slow as in the reference species [Ru(tpm)(bpy)(NCS)]+.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app