Add like
Add dislike
Add to saved papers

Assessment of new hydrogen peroxide activators in water and comparison of their active species toward contaminants of emerging concern.

Scientific Reports 2024 April 24
Advanced oxidation processes are the most efficient tool to thwart the overaccumulation of harmful organic compounds in the environment. In this direction bioinspired metal complexes may be a viable solution for oxidative degradations in water. However, their synthesis is often elaborated and their scalability consequently low. This study presents alternative easy-to-synthesize bioinspired metal complexes to promote degradations in water. The metals employed were iron and manganese ions, hence cheap and highly accessible ions. The complexes were tested toward Phenol, Estrone, Triclosan, Oxybenzone, Diclofenac, Carbamazepine, Erythromycin, Aspartame, Acesulfame K, Anisole and 2,4-Dinitrotoluene. The reaction favoured electron-rich compounds reaching a removal efficiency of over 90%. The central ion plays a crucial role. Specifically, Mn(II) induces a non-radical pathway while iron ions a predominant radical one (⋅ OH is predominant). The iron systems resulted more versatile toward contaminants, while the manganese ones showed a higher turn-over number, hence higher catalytic behaviour.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app