Add like
Add dislike
Add to saved papers

Dynamic acoustic optimization of pulse tube refrigerators for rapid cooldown.

Nature Communications 2024 April 24
Pulse tube refrigerators are a critical enabling technology for many disciplines that require low temperatures. These refrigerators dominate the total power consumption of most modern cryostats, including those that reach millikelvin temperatures using additional cooling stages. In state-of-the-art commercial pulse tube refrigerators, the acoustic coupling between the driving compressor and the refrigerator is fixed and optimized for operation at base temperature. We show that this optimization is incorrect during the cooldown process, which results in wasted power consumption by the compressor and slow cooldown speed. After developing analytic expressions that demonstrate the need for acoustic tuning as a function of temperature, we dynamically optimize the acoustics of a commercial pulse tube refrigerator and show that the cooldown speed can be increased to 1.7 to 3.5 times the original value. Acoustic power measurements show that loss mechanism(s)-and not the capacity of the compressor-limit the maximum cooling available at high temperatures, suggesting that even faster cooldown speeds can be achieved in the future. This work has implications for the accessibility of cryogenic temperatures and the cadence of research in many disciplines such as quantum computing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app