Add like
Add dislike
Add to saved papers

Molecular detection of exosomal miRNAs of blood serum for prognosis of colorectal cancer.

Scientific Reports 2024 April 18
Colorectal cancer (CRC) is the third most common cancer affecting people. The discovery of new, non-invasive, specific, and sensitive molecular biomarkers for CRC may assist in the diagnosis and support therapeutic decision making. Exosomal miRNAs have been demonstrated in carcinogenesis and CRC development, which makes these miRNAs strong biomarkers for CRC. Deep sequencing allows a robust high-throughput informatics investigation of the types and abundance of exosomal miRNAs. Thus, exosomal miRNAs can be efficiently examined as diagnostic biomarkers for disease screening. In the present study, a number of 660 mature miRNAs were detected in patients diagnosed with CRC at different stages. Of which, 29 miRNAs were differentially expressed in CRC patients compared with healthy controls. Twenty-nine miRNAs with high abundance levels were further selected for subsequent analysis. These miRNAs were either highly up-regulated (e.g., let-7a-5p, let-7c-5p, let-7f-5p, let-7d-3p, miR-423-5p, miR-3184-5p, and miR-584) or down-regulated (e.g., miR-30a-5p, miR-99-5p, miR-150-5p, miR-26-5p and miR-204-5p). These miRNAs influence critical genes in CRC, leading to either tumor growth or suppression. Most of the reported diagnostic exosomal miRNAs were shown to be circulating in blood serum. The latter is a novel miRNA that was found in exosomal profile of blood serum. Some of the predicted target genes of highly expressed miRNAs participate in several cancer pathways, including CRC pathway. These target genes include tumor suppressor genes, oncogenes and DNA repair genes. Main focus was given to multiple critical signaling cross-talking pathways including transforming growth factor β (TGFβ) signaling pathways that are directly linked to CRC. In conclusion, we recommend further analysis in order to experimentally confirm exact relationships between selected differentially expressed miRNAs and their predicted target genes and downstream functional consequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app