Add like
Add dislike
Add to saved papers

Dimerized Hofstadter model in two-leg ladder quasi-crystals.

Scientific Reports 2024 April 17
We theoretically study topological features, band structure, and localization properties of a dimerized two-leg ladder with an oscillating on-site potential. The periodicity of the on-site potential can take either rational or irrational values. We consider two types of dimerized configurations; symmetric and asymmetric models. For rational values of the periodicity as long as inversion symmetry is preserved both symmetric and asymmetric ladders can host topological phases. Additionally, the energy spectrum of the models exhibits a fractal structure known as the Hofstadter butterfly spectrum, dependent on the dimerization of the hopping and the strength of the on-site potential. In the case of irrational values for the periodicity, a metal-insulator phase transition occurs with small values of the critical strength of the on-site potential in the dimerized cases. Our models incorporate the effects of lattice configuration and quasi-periodicity, paving the way for establishing platforms that host both topological and non-topological phase transitions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app