Add like
Add dislike
Add to saved papers

A novel improved total variation algorithm for the elimination of scratch-type defects in high-voltage cable cross-sections.

In the quality inspection process of high-voltage cables, several commonly used indicators include cable length, insulation thickness, and the number of conductors within the core. Among these factors, the count of conductors holds particular significance as a key determinant of cable quality. Machine vision technology has found extensive application in automatically detecting the number of conductors in cross-sectional images of high-voltage cables. However, the presence of scratch-type defects in cut high-voltage cable cross-sections can significantly compromise the precision of conductor count detection. To address this problem, this paper introduces a novel improved total variation (TV) algorithm, marking the first-ever application of the TV algorithm in this domain. Considering the staircase effect, the direct use of the TV algorithm is prone to cause serious loss of image edge information. The proposed algorithm firstly introduces multimodal features to effectively mitigate the staircase effect. While eliminating scratch-type defects, the algorithm endeavors to preserve the original image's edge information, consequently yielding a noteworthy enhancement in detection accuracy. Furthermore, a dataset was curated, comprising images of cross-sections of high-voltage cables of varying sizes, each displaying an assortment of scratch-type defects. Experimental findings conclusively demonstrate the algorithm's exceptional efficiency in eradicating diverse scratch-type defects within high-voltage cable cross-sections. The average scratch elimination rate surpasses 90%, with an impressive 96.15% achieved on cable sample 4. A series of conducted ablation experiments in this paper substantiate a significant enhancement in cable image quality. Notably, the Edge Preservation Index (EPI) exhibits an improvement of approximately 20%, resulting in a substantial boost to conductor count detection accuracy, thus effectively enhancing the quality of high-voltage cable production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app